A Hint of What Topics Are Included in the ParaPro Exam

Study Notes compiled by: Clare Mohs

Following is an example of questions in the ParaPro Exam. The exam is made up of 90 multiple-choice questions in the subject areas of reading, mathematics, and writing. You are allowed 2 ½ hours. A calculator is not permitted.
Websites

- www.ets.org/parapro/test_prep/free
 click: ParaPro Assessment Test at a Glance (PDF)
 (18 questions)

- www.paraprocentral.com
 This website has one sample test (free), 15 questions similar to those on the real test. ParaproCentral also has ten more tests; but, you are paying for “sample” tests, not the real ParaPro Assessment Test.

- www.testprepreview.com/parapro_practice.htm
 29 test modules, with answers

Books

 Catalog number: 371.27 Bes
 A comprehensive review, and 2 full length practice exams.

- Praxis II: ParaPro Test Prep, a study guide with full length practice exam, by LearningExpress LLC. © 2010

<table>
<thead>
<tr>
<th>Multiplication Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Numbers

Integers are numbers that are not fractions or decimals. They can be either positive or negative.

..., -3, -2, -1, 0, 1, 2, 3, ...

Positive Integers 1, 2, 3, 4, ...

Negative Integers -1, -2, -3, -4, ...

Whole Numbers 0, 1, 2, 3, 4...

Odd Numbers 1, 3, 5, 7...

Even Numbers 2, 4, 6, 8, ...

Consecutive Integers 1, 2, 3, 4, ...

Prime Numbers – integers that can only be divided by 1 and themselves. They have no other divisor: 2, 3, 5, 7, 11, 13, 17...

Factor – a divisor of an integer.

Example: Factors of 12 are: 1, 2, 3, 4, 6, 12. 12 can be divided by 1, 2, 3, 4, 6, and 12.

Multiple – the product of an integer and another integer

Example: multiples of 5 are: 5, 10, 15, 20, 25

Words to watch for – in the math questions – clues to the operation you need to perform.

ADD – sum, plus, increased by

SUBTRACT – difference, less, decreased by

MULTIPLY – product, times, of

DIVIDE – quotient, per

Place Value

example: 2,143.698

In this number, the 2 is in the “thousands” place

The 1 is in the “hundreds” place

The 4 is in the “tens” place

The 3 is in the “ones” place

Decimal Point

The 6 is in the “tenths” place

The 9 is in the “hundredths” place

The 8 is in the “thousandths” place

The **number line** is a visual comparison of the relationship between numbers. As you move left on the number line, the number values get smaller; as you move right on the number line, the number values get larger.

> is greater than 0.217 > 0.186 = is equal to 0.32 = 0.320

< is less than 0.217 < 0.293 ≠ is not equal to 0.2 ≠ 0.3
Decimals
When comparing decimals, it is often helpful to write each number with the same number of decimal places.

Addition, subtraction, multiplication, and division of decimals works much the same way as with whole numbers, except that you must pay close attention to the placement of the decimal point.

Addition and Subtraction: make sure that you line up the decimal point.

Multiplication: Count the number of decimal places in the factors. In the answer, starting to the RIGHT of the right-most number, count off that number of decimal places and insert the decimal point.
example:
$$4.13 \times 2.5$$
$$10.325$$

Division: Before dividing, move the decimal point to the right to make the divisor a whole number. Then move the decimal point in the dividend (the number to be divided) the same number of decimal places.

$$\begin{array}{c}
6.2)18.6 \\
\underline{18.6} \\
0.0
\end{array}$$
then divide:
$$62 \div 18.6$$

Fractions
$$\frac{7}{8}$$
7 – is – the – numerator
8 – is – the – denominator

Remember: denominator – the number that is “down”, below the line.

Improper Fraction – the numerator is larger than denominator
$$\frac{12}{4}$$

Mixed Number – example:
$$2 \frac{3}{4}$$

To add or subtract fractions, you must first write them so that they have a common denominator.
$$\frac{2}{3} + \frac{1}{4} \text{ change to: } \frac{8}{12} + \frac{3}{12} = \frac{11}{12}$$

To multiply fractions, first write each fraction in improper form.
Then multiply straight across, and simplify.
$$\frac{3}{4} \times \frac{2}{5} = \frac{6}{20} = \frac{3}{10}$$

To divide fractions, first write each fraction in improper form.
Then write the second number as a reciprocal (switch numerator and denominator). Multiply straight across and simplify.
$$\frac{3}{4} \div \frac{2}{5} \text{ invert to: } \frac{3}{4} \times \frac{5}{2} = \frac{15}{8} = 1 \frac{7}{8}$$
Compare the following fractions, sort from smallest to largest

\[
\frac{2}{3} \quad \frac{1}{8} \quad \frac{5}{6}
\]

First, find the common denominator (24). Starting with the first fraction, 3 times what \(_ \) equals 24; answer 8, multiply the numerator (top number) by 8 and multiply the denominator by 8. With the next fraction, 8 times what \(_ \) equals 24; answer 3; multiply the numerator by 3, and the denominator by 3; continue with all fractions in the set.

\[
\frac{16}{24} \quad \frac{3}{24} \quad \frac{20}{24}
\]

The correct order is: \(\frac{1}{8} < \frac{2}{3} < \frac{5}{6} \)

Exponents (powers) show how many times a number, called the base, is multiplied by itself.

- \(6^2 \) is 6 to the second power (squared); \(6 \times 6 = 36 \)
- \(6^3 \) is 6 to the third power (cubed); \(6 \times 6 \times 6 = 216 \)

Note: Anything to the power of zero is just “1”.

Rules for the order of operations:
1. Do everything in parentheses
2. Compute the value of any exponential expressions
3. Multiplication and/or division, work from left to right
4. Addition and/or subtraction, work from left to right

Solve this problem: \(4^2 + \frac{7(6-2)}{2} = \) __

Imply parenthesis on the top of the fraction.
Simplify the numerator: \(6 - 2 = 4 \) Then multiply \(7 \times 4 = 28 \)

\[
4^2 + \frac{28}{2}, \quad 4^2 = 4 \times 4 = 16, \quad 16 + \frac{28}{2} = 16 + \frac{14}{1} = 16 + 14 = 30
\]

Quiz

Answers at the back of booklet.

1. What is the greatest common factor of the following numbers? 24, 32, 40, 56
 a. 2 b. 4 c. 8 d. 16

2. Which number is the least common multiple of 8 and 4?
 a. 2 b. 4 c. 8 d. 16

3. What is the least common denominator of \(\frac{1}{2}, \frac{1}{3}, \) and \(\frac{2}{5} \)?
 a. 6 b. 15 c. 10 d. 30

4. Which is a prime number between 35 and 40?
 a. 26 b. 37 c. 38 d. 39
5. Which of the following is true?
 a. \(8^2 = 16\)
 b. \(4^5 = 625\)
 c. \(3^4 = 81\)
 d. \(2^4 = 16\)

Review

Percents

Finding Percents. To find 3% of 80. Multiply .03 x 80 = 2.4

3% is the same as \(\frac{3}{100}\), and the same as .03

Changing Percents to Fractions. Write 25% as a fraction \(\frac{25}{100} = \frac{1}{4}\)

Changing Fractions to Percents. Write \(\frac{2}{3}\) as a percent. \(2 ÷ 3 = 66\frac{2}{3}\%\)

Changing Percents to Decimals. Write 42% as a decimal. 0.42

Changing Decimals to Percents. Write 0.3 as a percent. 30%

Radicals

The square root of a number is a number that when multiplied by itself results in the original number. The square root of 81 is 9 since \(9 \times 9 = 81\). \(\sqrt{81}\) Nine is the index and 81 is the radicand. The square root of 81 is 9.

Mean, Median, and Mode

The mean is the arithmetic average. It is the sum of the variables divided by the total number of variables. For example, the mean of 3, 4 and 8 is: \(3 + 4 + 8 = 15\). Then, divide 15 by the number of variables, which is three. \(15 ÷ 3 = 5\)

The median is the middle value in a set when there are an odd number of values. There will be an equal number of values larger and smaller than the median. When the set is an even number of values, the average of the two middle values is the median.

For example:
- The median of (2, 3, 5, 8, 9) is 5.
- The median of (2, 3, 5, 9, 10, 11) is \(\frac{5+9}{2} = 7\)

To figure mode, choose the number that is repeated most often.
Example: 3, 4, 4, 4, 4, 8, 9 The mode is 4.
6. Which of the following is the correct way to write this problem: “Multiply the sum of 6 and 4 and the sum of 2 and 8.”
 a. (6 + 4) x (2 + 8) = ?
 b. 6 + 4 x (2 + 8) = ?
 c. 6 + (4 x 2) + 8 = ?
 d. (6 + 4 x 2 + 8) = ?

7. \(\frac{4(7 + 8)}{2} - 6 = \)
 a. 36 b. 12 c. 24 d. -10

8. A student’s homework included a problem to find the original price of a dress if it was discounted by 20% and was subsequently bought for $112. The student calculated $112 divided by 0.80 to get her answer. How should her teacher correct this answer?
 a. No correction is needed. The student’s method is correct.
 b. She should have divided $112 by 0.20.
 c. She should have multiplied $112 by 0.80.
 d. She should have multiplied $112 by 0.20, then add that number to $112.

9. A class problem is to fill in the missing blank for the proportion \(\frac{2}{3} = \square \). What strategy would work best?
 a. Divide 72 by 2, then multiply that quotient by 3.
 b. Divide 72 by 3, then multiply that quotient by 2.
 c. Subtract 3 from 72, and then add that number to 2.
 d. Subtract 2 from 72, and then add that number to 3.

10. A morning training session begins at 8:45 a.m. and ends at 11:05 a.m. What is the length, in hours, of this session?
 a. 3 \(\frac{2}{3} \) b. 2 \(\frac{3}{4} \) c. 2 \(\frac{1}{3} \) d. 2 \(\frac{1}{6} \)

11. Which one of the following is best translated as “the quotient of 5 and 4 added to the product of 2 and 3”?
 a. \(\frac{5}{4} \times (2 + 3) \) b. \(5 \times 4 + \frac{2}{3} \)
 c. \(\frac{5}{4} + 2 \times 3 \) d. \(5 \times 4 - \frac{2}{3} \)
12. What is the mean for a group of 20 members in which seven of them are 3’s, nine of them are 6’s, and the rest of them are 10’s?
 a. 9.25 b. 7.67 c. 6.33 d. 5.75

Review

Number Sequences

A sequence of numbers is an ordered set of numbers. Sometimes a sequence is arithmetic, which means that in order to find the next number in the sequence, you have to add (or subtract) the same number. For example, the sequence 2, 5, 8, 11… starts with the number 2, and each subsequent number is found by adding 3 to the previous number. That is 2 + 3 = 5; 5 + 3 = 8, and so on.

Number sequence: 1, 3, 6, 10, 15 What would the next number in this sequence be?
1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15. The next number would be 21 (15 + 6). Each time you are adding one number higher than the previous time.

Here’s another example: 45, 40, 35, 30…. Starting with 45, each subsequent number is found by subtracting 5. You can see that 45 – 5 = 40; 40 - 5 = 35, and so on.

An example of a geometric sequence is 1, 2, 4, 8… Look at these numbers and see what you need to multiply (or divide) each number by to get the next number. In this case, it is “times 2” because 1 x 2 = 2, 2 x 2 = 4, and 4 x 2 = 8. The next number in the sequence is found by multiplying 8 by 2, which is 16.

Geometry

Geometry is the branch of mathematics that examines lines, points, angles, and various shapes. A polygon is a closed shape whose sides are line segments. The smallest polygon you can make has 3 sides and is called a triangle.

A four-sided figure is a quadrilateral.
A five-sided figure is a pentagon.
A six-sided figure is a hexagon.
A seven-sided figure is a heptagon.
An eight-sided figure is an octagon.

A regular polygon is one whose sides are all the same lengths and whose angle measures are all the same. A square is a regular quadrilateral.

A triangle that has a 90° angle (a right angle) is called a right triangle. A triangle with all three angles, each less than 90° is called an acute triangle. A triangle that has one obtuse angle (greater than 90°) is called an obtuse triangle. If all sides of a triangle are the same length, the triangle is Equilateral; the angles would also be equal. An isosceles triangle has two sides of equal length. A triangle with all three sides the same length is considered both isosceles and equilateral. A triangle with sides that are all different lengths is scalene.
The **perimeter** of a shape is the distance around it. The perimeter of a circle is its circumference; take the diameter measurement and multiply by π (3.14). The perimeter of a rectangle is 2 x length, plus 2 x width.

Area is the size of the region that a shape covers.

Example: The area of a circle is the radius squared (to the 2nd power), then multiply by π (3.14). If the radius of a circle is 5-inches, multiply 5 x 5 = 25, then multiply 25 x 3.14 = 78.5 square inches. Area of a rectangle is “length” x “width”. Area of a triangle is 1/2 times “base” times “height”.

Coordinate Grid

Plotting points on a coordinate grid requires both an x-coordinate and a y-coordinate. The x-coordinate (which is the **first** coordinate in an ordered pair) tells you how many units to move left or right from the origin. The **origin** is the point where the x- and y- axes intersect.

If you want to plot the point (4, 3) you will start at the origin. Move four spaces to the right, then move three spaces up. To plot the point (-2, 5) start at the origin, move two spaces to the left, then move five spaces up.

On the x-axis, moving right is positive and moving left is negative.
On the y-axis, moving up is positive and moving down is negative.

Algebra

Algebra is based on the concept of unknown values called **variables**. The idea is that an **equation** represents a scale. Instead of keeping the scale balanced with weights, it is balanced by numbers. As long as the same operation (addition, subtraction, multiplication, etc.) is done to both sides of the scale, it will remain balanced.

Example: \(x + 23 = 45 \) Subtract 23 from each side of the “equal” sign.
\[
-23 \quad -23 \quad \text{and you will have} \quad x = 22.
\]

Example: \(x + 23 = 3x + 45 \), subtract x from each side, \(23 = 2x + 45 \), then subtract 45 from each side, and you will have: \(-22 = 2x\), then divide each side by 2, you will have: \(x = -11 \)

When **dividing 1 negative number and 1 positive number** the answer will always be a negative number.
When **multiplying 1 negative number and 1 positive number** the answer will always be a negative number. If you **multiply two negative numbers** the answer will be a positive number. If you **divide two negative numbers**, the answer will be a positive number.

Quiz

Answers at the back of booklet.

13. According to this number sequence, what would be the next number? 1, 3, 6, 10, 15, …
 a. 30 b. 10 c. 21 d. 25

14. According to this number sequence, what would be the next number? 7, 11, 15, 19, ….
 a. 27 b. 23 c. 24 d. 25

15. According to this number sequence, what would be the next number? 3, 6, 12, 24, …
 a. 72 b. 30 c. 32 d. 48

16. How many sides does a pentagon have?
 a. 8 b. 3 c. 5 d. 4

17. How many sides are the same lengths in a scalene triangle?
 a. 2 b. 0 c. 3 d. 1

18. What is the perimeter of a rectangle that measures 4-inches by 3-inches?
 a. 14-inches b. 7-inches c. 12-inches d. 24-inches

Measurements

- 12-inches = 1 foot, 3 feet = 1 yard, 5,280 feet = 1 mile
- 8 oz. = 1 cup, 2 cups = 1 pint, 2 pints = 1 quart, 4 quarts = 1 gallon
- 100 centimeters (cm) = 1 meter, 1,000 millimeters (mm) = 1 meter, 1,000 meters = 1 kilometer

Review

MAIN IDEA or PURPOSE of a Passage

Ties all sentences together; each sentence expresses, supports, or develops the **main idea**.

Repeated words / ideas = main idea.

What is the author’s purpose for writing the passage? Define, describe, refute, inform, persuade.

Ask: The passage is primarily concerned with…
 The author’s purpose in writing this passage is more likely to…
SUPPORTING IDEAS offer facts, details, and definitions.

Supporting ideas provide additional information, but do not change the main idea or purpose of the passage.

How is a reading selection organized? Writers may **ORGANIZE** text by:

- Analogy – the relationship between two things, which are similar in many, but not all respects; example: Glove is to hand as paint is to wall.
- Analyze or criticize something and give evidence
- Ask a question and answer it
- Cause-and-effect – explain why things occur
- Chronological – in the order that it occurs
- Compare & contrast points of view, characters, or settings
- Generalization – to form general conclusions
- Hypothesis – an assertion subject to proof
- Phenomenon – occurrence or fact perceivable by senses
- Refute – offer an idea and prove it to be false
- State a problem and then give a solution
- Summarize – to present in condensed form
- Theory – assumption to explain phenomena

Alphabetizing Words
Example: Alphabetize these words: good, gold, ghost, giant, gourd.
The answer is: ghost, giant, gold, good, gourd.

Application of Reading - sound out words.
- Vowels – a, e, i, o, u, & sometimes y
- Long and short vowels – cape, cap
- Vowel combinations – oo, ou, ai, ie, ea, eigh
- Know the consonants and their sounds
 - s like “s”, or s like “z” (sack, rise)
 - c like “c”, or c like “s” (cast, rice)
- Common consonant combinations – th, sh, gh, ct, ck, sl, tr

Root word - carries the meaning, can stand alone
 - auto, cycle, snow, able, care, pay

Prefixes – groups of letters added to the beginning of a root word that change its meaning:
 - pre-, post-, micro-, un-, anti-, mal-, non-, post-, pro-

Suffixes – groups of letters at the end a root word that change how a word is used:
 - -ly, -ate, -er, -acy, -ment, -ize, -less

Compound words – two whole single words put together. Examples:
 - backpack haircut sunlight
 - birdbath snowman watermelon
Syllables – distinct unit of sound, use a dictionary.
 as/ter/oid com/mu/ni cate
 as/ton/ish dis/tri/bu/tion

Synonyms – words that have similar meanings.
 Examples: little – small; soft – downy; wet – moist

Antonyms – words that have opposite meanings.
 Examples: high – low; shiny – dull; wet – dry

Homonyms – words that sound alike but have different meanings.
 Examples: ate – eight; buy – by; our – hour; wear – where

Spelling
Samples of commonly misspelled words: occasion, definitely, dictionary, restaurant, recommend, principle, principal, occurrence.

Tools of the Reading Process
• Evaluate appropriate student responses
• Ask a question to help students to understand a passage
• Help students to use a dictionary
• Interpret directions and/or help students to interpret directions

Drawing Inferences
Inferences are ideas suggested or implied by the author based on information in the passage. Inferences are not stated. Writers imply meaning. They don’t tell the reader everything.
 Anita: “Did you buy purple shingles for your house?”
 Todd: “The manufacturer offers asphalt shingles only in gray, brick red, and brown.”

Fact and Opinion
Facts – verifiable, can be observed, measured, or documented (dates, numbers).

Opinions – beliefs or judgments, subjective in nature
Look for words such as: “probably”, “perhaps”, “feel”, “believe”, “best”, “worst”.

Graphic Text – read the title; it gives you the objective.
• pie charts
• line and bar graphs
• tables
• table of contents
• indexes

What Kids Like Best

<table>
<thead>
<tr>
<th>Food Group</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweets</td>
<td>26%</td>
</tr>
<tr>
<td>Meat</td>
<td>24%</td>
</tr>
<tr>
<td>Bread</td>
<td>24%</td>
</tr>
<tr>
<td>Milk</td>
<td>16%</td>
</tr>
<tr>
<td>Fruit & Veggie</td>
<td>10%</td>
</tr>
<tr>
<td>Milk</td>
<td></td>
</tr>
<tr>
<td>Meat</td>
<td></td>
</tr>
</tbody>
</table>

Pie chart example:
Writing

Types of Writing

Narrative – writing that tells a story
Descriptive – “painting a picture” with words
Persuasive – writing to convince others by presenting solid, supported arguments
Expository – writing how to do something, or how something works

PARTS of SENTENCES

Subject – a person, place, or thing that is performing an action.

Predicate – the action that the subject performs or an assertion about that subject.
 Distinguish between simple and complete predicate.
 Simple predicate – verb
 Complete predicate – verb and adverbs, adjectives, prepositional phrases.
 Hint: Find the verb first!

Examples:
 Ricky has been working in the garage. The complete predicate is underlined.
 What is the simple predicate? has been working

 We are working hard in this hayfield.
 What is the simple predicate? are working hard

PARTS of SPEECH

Noun – name of person, place, thing or concept (idea)
Examples of nouns: teacher (person), school (place), pencil (thing), happiness (concept/idea)

Proper Noun – name of specific person, place, thing, event, or idea.
Examples of proper nouns: Louise (person), Mt Helens (place), Rock Hill Monument (thing), Granite City Days (event).

Verb – tells what a subject does or is.

Action verbs – examples: walk, swim, feel, run, had eaten.

State of being verbs – examples: is, am, are, was, were, be, been, being.

A verb can indicate the number of the noun engaging in the action (singular – one; plural – more than one).

Example: to jog
 Singular: The girl jogs to the beach.
 Plural: The girls jog to the beach.
A verb can be one word or many words.
Helping verbs help verbs stand.

<table>
<thead>
<tr>
<th>am</th>
<th>could</th>
<th>have</th>
<th>should</th>
</tr>
</thead>
<tbody>
<tr>
<td>are</td>
<td>do</td>
<td>is</td>
<td>was</td>
</tr>
<tr>
<td>be</td>
<td>did</td>
<td>may</td>
<td>were</td>
</tr>
<tr>
<td>been</td>
<td>does</td>
<td>might</td>
<td>will</td>
</tr>
<tr>
<td>being</td>
<td>had</td>
<td>must</td>
<td>would</td>
</tr>
<tr>
<td>can</td>
<td>has</td>
<td>shall</td>
<td></td>
</tr>
</tbody>
</table>

I walk. I have walked. I do walk. I will have walked. I should have been walking.

Adjective – describes a noun or pronoun – it modifies

Examples: A **tired** man walked to town.
Three **birds** were at the birdfeeder.
A **large** bird was perched on the dock.

Adverb – modifies a verb, an adjective, another adverb, or a clause

Most adverbs end in “ly”.
Examples of adverbs without “ly” (those that refer to time and frequency): today, yesterday, soon, never, always, sometimes

Adverbs often answer the question *how?*

Examples:
Adverb modifies a verb: *Fran finished her dessert quickly.*
Adverb modifies an adjective: *The directions left him completely confused.*
Adverb modifies another adverb: *The squirrel ran up the tree very quickly.*
Adverb modifies a clause: *Suddenly, the horses raced past.*

Pronoun – stands in for or refers to a noun, can be personal or possessive.

Examples: She **baked** a pie. Sally changed the oil in **her** car.

Personal pronouns to use as **subjects**: I, we, you, he, she, it, they.
(Use these to the left of the verb). Who & whoever are subject case.

Personal pronouns to use as **objects**: me, us, you, him, her, it, them
(Use the verb, then the object). Whomever & whom are object case.

Examples: He **fell** off the horse.
George gave the extra cookie to **me**.
They hired the man **whom** we interviewed last week.

Correct: She and Mary were late for class.
Incorrect: Her and Mary were late for class.

PREPOSITION - shows place.
Prepositions are used most often in front of a noun or pronoun to identify a relationship, direction, time, or space.
Examples: The woman went to town. Henry drove from the bank. Kerry hasn’t seen Josh since Sunday.

Some common prepositions:
- about
- for
- outside
- with
- above
- from
- over
- without
- across
- in
- since
- according to
- around
- inside
- through
- because of
- at
- into
- throughout
- by way of
- before
- like
- to
- in addition to
- beneath
- near
- toward
- in front of
- beside
- of
- under
- in place of
- between
- off
- until
- in regard to
- by
- on
- up
- instead of
- during
- out
- upon
- on account of

A prepositional phrase is made up of a preposition and an object (noun or pronoun).

Examples of prepositional phrases:
- behind the couch
- around the lake
- at Sally’s house
- during lunch
- over the hill
- under the bridge

Notice the prepositional phrase contains no verbs.

SUBJECT-VERB AGREEMENT
The subject must agree with the verb

- Birds fly. Correct
- A child walks. Incorrect A child walk.

VERB TENSE ERRORS
Janet suggested going to the store, but Sam votes for the show. (it should read “voted”)

Noun-pronoun agreement – pronouns replacing nouns must have the same number.
- I tried to go to the church near my house, but they were closed.
 (corrected: “it was” closed.)

PARALLELISM – keeping items parallel.
Example: hop, skip, and jump
Incorrect: hop, skip, and jumping

Examples of sentences that are not parallel:
- Jeannie enjoys traveling and to visit friends. (remove “to visit” and use “visiting”)
- Grace likes playing with her gerbil and to walk her dog. (remove “to walk” and use “walking”)
- I called the dentist, the lawyer, and I went to the garden show. (leave the word “I” out)
- I like to jog, to bike, and reading. (to read)

Use a comma to separate elements of a sentence.
These could be two different sentences.
FANBOY’s

F, for
A, and
N, nor
B, but
O, or
Y, yet
S, so

FANBOY’s are used to connect two independent clauses (two sentences).
Example: Sally won the trophy, **but** Jessica has more experience in sports.

Semicolon – separate two independent clauses.
Example: Lenny wanted to wear his lucky tie for his job interview; unfortunately, the tie was at the cleaner.
To prepare for the track meet, Jane stretched her muscles; however, she still had cramps.

Apostrophes – can be used to show that a noun belongs to someone or something.
the dog’s tail
the car’s tires
Ann’s recipe
Jessica’s idea

Possession for plural nouns:
the dogs’ howling
sailors’ boats
the students’ desks
the racecars’ engines
the books’ covers
the teachers’ classrooms

Comma Splice – be careful not to create a comma splice. Example:
“I don’t want to hear about the dishes,” I said, “tell me about the meal.”
Corrected: “I don’t want to hear about the dishes,” I said, “Tell me about the meal.”

Independent clause: is a synonym for sentence. A sentence is an independent clause, or it is made up of more than one independent clause.

Dependent clause - does not meet the criteria of a sentence, it is not a complete thought.

Compound sentence: is one that has more than one independent clause, and no dependent clauses.

Example: The children baked three pies, and they took all of them to their parents.
George began the governors campaign this year, but he still managed to win.
Each underlined section has a **subject + verb predicate**, and each is a complete thought.
The only way to connect two independent clauses is by a FANBOY (comma) or a semicolon.

This is a **simple sentence:**
Linguists have discovered at least three ancient languages.

It is changed to a **complex sentence** by adding a dependent clause.
Linguists have discovered at least three ancient languages that may be the origin of all others.
Complex-compound sentences – have at least one dependent clause (making it complex) and two or more independent clauses (making it compound). Example:

Because George has always been a big eater, no one was surprised at his obesity, and his congestive heart diagnosis also came as no surprise.

The independent clauses are underlined. The phrase in this sentence that is in **bold** is the dependent clause.

Quotations

Quotations are necessary with direct quotes, which are words that someone else exactly said, or as written from a source such as a book or film.

Mary gave me precise directions. “Do not,” she said, “enter the garage while I am painting.”

“Did you mow the lawn?” George asked. “Yes!” Amy exclaimed.

Include the comma, period, exclamation point, question mark **inside the quotation marks**.

Colons and semi-colons go outside of the quotation marks.

 Example: *The article stressed the accident’s “special circumstances”: It insisted that their behavior was normal.*

Quiz

Answers at the back of booklet.

19. Grammar: Choose the correct sentence.
 a. The red fox thought that none of his porridge were missing.
 b. The red fox thought that all of his porridge were missing.
 c. The red fox thought that some of his porridge were missing.
 d. The red fox thought that some of his porridge was missing.

20. Choose the sentence with the correct comma placement.
 a. I took Alice, the one with the freckles to the movie last night.
 b. I took Alice, the one with the freckles, to the movie last night.
 c. I took Alice the one with the freckles, to the movie last night.
 d. I took Alice, the one with the freckles, to the movie, last night.

21. Choose the correct sentence.
 a. Whom do you think you are to give me advice.
 b. Who do you think you are to give me advice.
 c. Whom do you think you are to give her advice.
 d. Who do you think you are to give he advice.

22. Which is a pair of antonyms?
 a. cautious and careless
 b. fast and quick
 c. effort and attempt
 d. eight and ate
23. Which word is an example of a suffix?
 a. noncompliant c. tree
 b. predict d. careless

24. Many bicyclists used helmets during the bicycling craze that occurred in the 1980’s.

 In the sentence above, what is the simple predicate (the verb that tells what the subject does).
 a. used c. bicycling
 b. during d. occurred

25. Which word is NOT spelled correctly?
 a. recognize c. accomplish
 b. privilege d. reasonable

Quiz answers

1. c (8)
2. c (8)
3. d (30)
4. b (37)
5. c
6. a
7. c Add 7 + 8 = 15, then multiply that times 4 = 60.

\[
\frac{60}{2} = \frac{30}{1} = 30 - 6 = 24
\]

8. a
9. b (numerator is 48)
10. c
11. c
12. d
13. c
14. b
15. d
16. c
17. b
18. a
19. d
20. b
21. b
22. a
23. d
24. a
25. d
The ParaPro Exam is given at:
Community Ed at the
Quarryview Education Center
800 Seventh Street South
Waite Park MN 56387

To register for the test: Call: Jean B. at (320) 370-8227

Bring a Photo I.D. when you come for the test. The cost is $65.

You are given 2 ½ hours to take the test; which consists of
90 multiple-choice questions. You will be provided with scratch
paper and pencils. Calculators are not permitted.

After you have taken the test you will receive your Test Score.
As you start the test and fill in your name, the computer will
say that your test results will be sent to your school district –
BUT THEY ARE NOT. You will need to scan your ParaPro
Score sheet and attach it to your online application;
or, bring it to the St Cloud Area School District office
located at: 1201 2nd Street South, Waite Park MN 56387,
and we will make a copy.

If you have questions call Student Services Office, at the
district office, (320) 370-8081.

For info about the test, go to: http://www.ets.org/